\(\int \frac {1}{(d+e x)^2 \sqrt {a+b x+c x^2}} \, dx\) [2379]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 22, antiderivative size = 134 \[ \int \frac {1}{(d+e x)^2 \sqrt {a+b x+c x^2}} \, dx=-\frac {e \sqrt {a+b x+c x^2}}{\left (c d^2-b d e+a e^2\right ) (d+e x)}+\frac {(2 c d-b e) \text {arctanh}\left (\frac {b d-2 a e+(2 c d-b e) x}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x+c x^2}}\right )}{2 \left (c d^2-b d e+a e^2\right )^{3/2}} \]

[Out]

1/2*(-b*e+2*c*d)*arctanh(1/2*(b*d-2*a*e+(-b*e+2*c*d)*x)/(a*e^2-b*d*e+c*d^2)^(1/2)/(c*x^2+b*x+a)^(1/2))/(a*e^2-
b*d*e+c*d^2)^(3/2)-e*(c*x^2+b*x+a)^(1/2)/(a*e^2-b*d*e+c*d^2)/(e*x+d)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {744, 738, 212} \[ \int \frac {1}{(d+e x)^2 \sqrt {a+b x+c x^2}} \, dx=\frac {(2 c d-b e) \text {arctanh}\left (\frac {-2 a e+x (2 c d-b e)+b d}{2 \sqrt {a+b x+c x^2} \sqrt {a e^2-b d e+c d^2}}\right )}{2 \left (a e^2-b d e+c d^2\right )^{3/2}}-\frac {e \sqrt {a+b x+c x^2}}{(d+e x) \left (a e^2-b d e+c d^2\right )} \]

[In]

Int[1/((d + e*x)^2*Sqrt[a + b*x + c*x^2]),x]

[Out]

-((e*Sqrt[a + b*x + c*x^2])/((c*d^2 - b*d*e + a*e^2)*(d + e*x))) + ((2*c*d - b*e)*ArcTanh[(b*d - 2*a*e + (2*c*
d - b*e)*x)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x + c*x^2])])/(2*(c*d^2 - b*d*e + a*e^2)^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 744

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m + 1)*
((a + b*x + c*x^2)^(p + 1)/((m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Dist[(2*c*d - b*e)/(2*(c*d^2 - b*d*e + a*e
^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c,
 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m + 2*p + 3, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {e \sqrt {a+b x+c x^2}}{\left (c d^2-b d e+a e^2\right ) (d+e x)}+\frac {(2 c d-b e) \int \frac {1}{(d+e x) \sqrt {a+b x+c x^2}} \, dx}{2 \left (c d^2-b d e+a e^2\right )} \\ & = -\frac {e \sqrt {a+b x+c x^2}}{\left (c d^2-b d e+a e^2\right ) (d+e x)}-\frac {(2 c d-b e) \text {Subst}\left (\int \frac {1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac {-b d+2 a e-(2 c d-b e) x}{\sqrt {a+b x+c x^2}}\right )}{c d^2-b d e+a e^2} \\ & = -\frac {e \sqrt {a+b x+c x^2}}{\left (c d^2-b d e+a e^2\right ) (d+e x)}+\frac {(2 c d-b e) \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x+c x^2}}\right )}{2 \left (c d^2-b d e+a e^2\right )^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.59 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.93 \[ \int \frac {1}{(d+e x)^2 \sqrt {a+b x+c x^2}} \, dx=-\frac {\frac {e \sqrt {a+x (b+c x)}}{d+e x}+\frac {(2 c d-b e) \arctan \left (\frac {\sqrt {c} (d+e x)-e \sqrt {a+x (b+c x)}}{\sqrt {-c d^2+e (b d-a e)}}\right )}{\sqrt {-c d^2+e (b d-a e)}}}{c d^2+e (-b d+a e)} \]

[In]

Integrate[1/((d + e*x)^2*Sqrt[a + b*x + c*x^2]),x]

[Out]

-(((e*Sqrt[a + x*(b + c*x)])/(d + e*x) + ((2*c*d - b*e)*ArcTan[(Sqrt[c]*(d + e*x) - e*Sqrt[a + x*(b + c*x)])/S
qrt[-(c*d^2) + e*(b*d - a*e)]])/Sqrt[-(c*d^2) + e*(b*d - a*e)])/(c*d^2 + e*(-(b*d) + a*e)))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(270\) vs. \(2(122)=244\).

Time = 0.37 (sec) , antiderivative size = 271, normalized size of antiderivative = 2.02

method result size
default \(\frac {-\frac {e^{2} \sqrt {\left (x +\frac {d}{e}\right )^{2} c +\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}}{\left (a \,e^{2}-b d e +c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}+\frac {\left (b e -2 c d \right ) e \ln \left (\frac {\frac {2 a \,e^{2}-2 b d e +2 c \,d^{2}}{e^{2}}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}\, \sqrt {\left (x +\frac {d}{e}\right )^{2} c +\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{2 \left (a \,e^{2}-b d e +c \,d^{2}\right ) \sqrt {\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}}}{e^{2}}\) \(271\)

[In]

int(1/(e*x+d)^2/(c*x^2+b*x+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/e^2*(-1/(a*e^2-b*d*e+c*d^2)*e^2/(x+d/e)*((x+d/e)^2*c+(b*e-2*c*d)/e*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)+1/
2*(b*e-2*c*d)*e/(a*e^2-b*d*e+c*d^2)/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2-b*d*e+c*d^2)/e^2+(b*e-2*c*d)/
e*(x+d/e)+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*((x+d/e)^2*c+(b*e-2*c*d)/e*(x+d/e)+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))
/(x+d/e)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 305 vs. \(2 (122) = 244\).

Time = 0.42 (sec) , antiderivative size = 652, normalized size of antiderivative = 4.87 \[ \int \frac {1}{(d+e x)^2 \sqrt {a+b x+c x^2}} \, dx=\left [-\frac {{\left (2 \, c d^{2} - b d e + {\left (2 \, c d e - b e^{2}\right )} x\right )} \sqrt {c d^{2} - b d e + a e^{2}} \log \left (\frac {8 \, a b d e - 8 \, a^{2} e^{2} - {\left (b^{2} + 4 \, a c\right )} d^{2} - {\left (8 \, c^{2} d^{2} - 8 \, b c d e + {\left (b^{2} + 4 \, a c\right )} e^{2}\right )} x^{2} + 4 \, \sqrt {c d^{2} - b d e + a e^{2}} \sqrt {c x^{2} + b x + a} {\left (b d - 2 \, a e + {\left (2 \, c d - b e\right )} x\right )} - 2 \, {\left (4 \, b c d^{2} + 4 \, a b e^{2} - {\left (3 \, b^{2} + 4 \, a c\right )} d e\right )} x}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) + 4 \, {\left (c d^{2} e - b d e^{2} + a e^{3}\right )} \sqrt {c x^{2} + b x + a}}{4 \, {\left (c^{2} d^{5} - 2 \, b c d^{4} e - 2 \, a b d^{2} e^{3} + a^{2} d e^{4} + {\left (b^{2} + 2 \, a c\right )} d^{3} e^{2} + {\left (c^{2} d^{4} e - 2 \, b c d^{3} e^{2} - 2 \, a b d e^{4} + a^{2} e^{5} + {\left (b^{2} + 2 \, a c\right )} d^{2} e^{3}\right )} x\right )}}, \frac {{\left (2 \, c d^{2} - b d e + {\left (2 \, c d e - b e^{2}\right )} x\right )} \sqrt {-c d^{2} + b d e - a e^{2}} \arctan \left (-\frac {\sqrt {-c d^{2} + b d e - a e^{2}} \sqrt {c x^{2} + b x + a} {\left (b d - 2 \, a e + {\left (2 \, c d - b e\right )} x\right )}}{2 \, {\left (a c d^{2} - a b d e + a^{2} e^{2} + {\left (c^{2} d^{2} - b c d e + a c e^{2}\right )} x^{2} + {\left (b c d^{2} - b^{2} d e + a b e^{2}\right )} x\right )}}\right ) - 2 \, {\left (c d^{2} e - b d e^{2} + a e^{3}\right )} \sqrt {c x^{2} + b x + a}}{2 \, {\left (c^{2} d^{5} - 2 \, b c d^{4} e - 2 \, a b d^{2} e^{3} + a^{2} d e^{4} + {\left (b^{2} + 2 \, a c\right )} d^{3} e^{2} + {\left (c^{2} d^{4} e - 2 \, b c d^{3} e^{2} - 2 \, a b d e^{4} + a^{2} e^{5} + {\left (b^{2} + 2 \, a c\right )} d^{2} e^{3}\right )} x\right )}}\right ] \]

[In]

integrate(1/(e*x+d)^2/(c*x^2+b*x+a)^(1/2),x, algorithm="fricas")

[Out]

[-1/4*((2*c*d^2 - b*d*e + (2*c*d*e - b*e^2)*x)*sqrt(c*d^2 - b*d*e + a*e^2)*log((8*a*b*d*e - 8*a^2*e^2 - (b^2 +
 4*a*c)*d^2 - (8*c^2*d^2 - 8*b*c*d*e + (b^2 + 4*a*c)*e^2)*x^2 + 4*sqrt(c*d^2 - b*d*e + a*e^2)*sqrt(c*x^2 + b*x
 + a)*(b*d - 2*a*e + (2*c*d - b*e)*x) - 2*(4*b*c*d^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d*e)*x)/(e^2*x^2 + 2*d*e*x
+ d^2)) + 4*(c*d^2*e - b*d*e^2 + a*e^3)*sqrt(c*x^2 + b*x + a))/(c^2*d^5 - 2*b*c*d^4*e - 2*a*b*d^2*e^3 + a^2*d*
e^4 + (b^2 + 2*a*c)*d^3*e^2 + (c^2*d^4*e - 2*b*c*d^3*e^2 - 2*a*b*d*e^4 + a^2*e^5 + (b^2 + 2*a*c)*d^2*e^3)*x),
1/2*((2*c*d^2 - b*d*e + (2*c*d*e - b*e^2)*x)*sqrt(-c*d^2 + b*d*e - a*e^2)*arctan(-1/2*sqrt(-c*d^2 + b*d*e - a*
e^2)*sqrt(c*x^2 + b*x + a)*(b*d - 2*a*e + (2*c*d - b*e)*x)/(a*c*d^2 - a*b*d*e + a^2*e^2 + (c^2*d^2 - b*c*d*e +
 a*c*e^2)*x^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x)) - 2*(c*d^2*e - b*d*e^2 + a*e^3)*sqrt(c*x^2 + b*x + a))/(c^2*
d^5 - 2*b*c*d^4*e - 2*a*b*d^2*e^3 + a^2*d*e^4 + (b^2 + 2*a*c)*d^3*e^2 + (c^2*d^4*e - 2*b*c*d^3*e^2 - 2*a*b*d*e
^4 + a^2*e^5 + (b^2 + 2*a*c)*d^2*e^3)*x)]

Sympy [F]

\[ \int \frac {1}{(d+e x)^2 \sqrt {a+b x+c x^2}} \, dx=\int \frac {1}{\left (d + e x\right )^{2} \sqrt {a + b x + c x^{2}}}\, dx \]

[In]

integrate(1/(e*x+d)**2/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral(1/((d + e*x)**2*sqrt(a + b*x + c*x**2)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{(d+e x)^2 \sqrt {a+b x+c x^2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(1/(e*x+d)^2/(c*x^2+b*x+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*e^2-b*d*e>0)', see `assume?`
 for more de

Giac [F(-2)]

Exception generated. \[ \int \frac {1}{(d+e x)^2 \sqrt {a+b x+c x^2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(1/(e*x+d)^2/(c*x^2+b*x+a)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Error: Bad Argument Type

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(d+e x)^2 \sqrt {a+b x+c x^2}} \, dx=\int \frac {1}{{\left (d+e\,x\right )}^2\,\sqrt {c\,x^2+b\,x+a}} \,d x \]

[In]

int(1/((d + e*x)^2*(a + b*x + c*x^2)^(1/2)),x)

[Out]

int(1/((d + e*x)^2*(a + b*x + c*x^2)^(1/2)), x)